雅可比行列式的意义是什么?
坐标系变换后单位微分元的比率或倍数。因为非线性方程组被线性化(偏微分)后,可以使用矩阵工具了,雅克比矩阵就是这个线性化后的矩阵。任给一个n维向量X,其范数‖X‖是一个满足下列三个条件的实数:(1) 对于任意向量X,‖X‖≥0,且‖X‖=0óX=0;(2) 对于任意实数λ及任意向量X,‖λX‖=|λ|‖X‖;(3) 对于任意向量X和Y,‖X+Y‖≤‖X‖+‖Y‖;雅可比行列式如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负。如果雅可比行列式恒等于零,则函数组是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数。如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负(其正负号标志着u-坐标系的旋转定向是否与x-坐标系的一致)。以上内容参考;百度百科-雅可比行列式
雅可比行列式是什么?
雅可比行列式通常称为雅可比式(Jacobian),它是以n个n元函数的偏导数为元素的行列式 。坐标系变换后单位微分元的比率或倍数。因为非线性方程组被线性化(偏微分)后,可以使用矩阵工具了,雅克比矩阵就是这个线性化后的矩阵。任给一个n维向量X,其范数‖X‖是一个满足下列三个条件的实数:(1) 对于任意向量X,‖X‖≥0,且‖X‖=0óX=0;(2) 对于任意实数λ及任意向量X,‖λX‖=|λ|‖X‖;(3) 对于任意向量X和Y,‖X+Y‖≤‖X‖+‖Y‖。在向量分析中,雅可比矩阵是函数的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌入其中。它们全部都以数学家卡尔·雅可比命名;英文雅可比行列式"Jacobian"可以发音为[ja ˈko bi ən]或者[ʤə ˈko bi ən]。