维尔斯特拉斯函数

时间:2024-12-16 08:20:14编辑:小早

一致收敛的定义是什么?

一致收敛性定义:其概念可叙述为函数列 fn一致收敛至函数 f 代表所有的 x,fn(x) 收敛至 f(x) 有相同的收敛速度。由于它较逐点收敛更强,故能保持一些重要的分析性质,例如连续性、黎曼可积性。一致收敛和逐点收敛定义的区别在于,在一致收敛中仅与相关,而在逐点收敛中还与相关。所以一致收敛必定逐点收敛,而反之则不然。收敛是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。高数中收敛是指函数有极限。函数收敛准则:关于函数在某点处的收敛定义。对于任意实数c,存在此数大于0,对任意两个数a、b,满足a减b大于0小于c。收敛的定义方式很好的体现了数学分析的精神实质。

一致收敛和收敛的区别是什么?

一致收敛和收敛的区别:一、fn一致收敛到f:对于任意的e>0,存在一个N>0,使对于任意的x在定义域和n>N, |f(x)-fn(x)|<e。二、fn逐点收敛到f:对于任意的e>0,对于任意的x在定义域,存在一个N_x>0,使任意的和n>N_x, |f(x)-fn(x)|<e。柯西准则:级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。

上一篇:蒙求

下一篇:没有了