怎么计算回归系数
一般来说,线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线,其经验拟合方程如下:其相关系数(即通常说的拟合的好坏)可以用以下公式来计算: 虽然不同的统计软件可能会用不同的格式给出回归的结果,但是它们的基本内容是一致的。以STATA的输出为例来说明如何理解回归分析的结果。在这个例子中,测试读者的性别(gender),年龄(age),知识程度(know)与文档的次序(noofdoc)对他们所觉得的文档质量(relevance)的影响。输出:Source | SS df MS Number of obs = 242-------------+------------------------------------------ F ( 4, 237) = 2.76Model | 14.0069855 4 3.50174637 Prob > F = 0.0283Residual | 300.279172 237 1.26700072 R-squared = 0.0446------------- +------------------------------------------- Adj R-squared = 0.0284Total | 314.286157 241 1.30409194 Root MSE = 1.1256------------------------------------------------------------------------------------------------relevance | Coef. Std. Err. t P>|t| Beta---------------+--------------------------------------------------------------------------------gender | -.2111061 .1627241 -1.30 0.196 -.0825009age | -.1020986 .0486324 -2.10 0.037 -.1341841know | .0022537 .0535243 0.04 0.966 .0026877noofdoc | -.3291053 .1382645 -2.38 0.018 -.1513428_cons | 7.334757 1.072246 6.84 0.000 .------------------------------------------------------------------------------------------- ,,其中,代表y的平方和;是相关系数,代表变异被回归直线解释的比例;就是不能被回归直线解释的变异,即SSE。根据回归系数与直线斜率的关系,可以得到等价形式:,其中b为直线斜率 ,其中是实际测量值,是根据直线方程算出来的预测值
回归系数的意义是什么?
回归系数,在回归方程中表示自变量对因变量影响大小的参数,回归系数越大表示自变量对因变量影响越大,正回归系数表示因变量随自变量增大而增大,负回归系数表示因变量随自变量增大而减小。回归系数大于零则相关系数大于零,回归系数小于零则相关系数小于零,回归系数大于零,回归方程曲线单调递增,回归系数小于零,回归方程曲线单调递减,回归系数等于零,回归方程得到最值。注意标准化回归系数的比较结果只是适用于某一特定环境的,而不是绝对正确的,它可能因时因地而变化。举例来说,从某一次数据中得出,在影响人格形成的因素中,环境因素的Beta值比遗传因素的Beta值大。这只能说明数据采集当时当地的情况,而不能加以任何不恰当的推论,不能绝对地不加任何限定地说,环境因素的影响就是比遗传因素大。事实上,如果未来环境因素的波动程度变小,很可能遗传因素就显得更为重要。
回归系数的含义是什么?
回归系数在回归方程中表示自变量x对因变量y影响大小的参数。回归系数的经济意义是每当x产生单个数额的变化时,y受到影响而变动的数额。回归系数的经济意义实际上就是回归系数在统计学中的含义。回归系数的英文名是regression coefficient,具体是指在回归方程中x影响y而变动的参数。回归系数可以说是西方经济学统计学分支中的内容,也可以说是数学中的内容。伪回归若是所建立的回归模型在经济意义上没有因果关系,那么这个就是伪回归,例如路边小树年增长率和国民经济年增长率之间存在很大的相关系数,但是建立的模型却是伪回归。如果你直接用数据回归,那肯定存在正相关,而其实这个是没有意义的回归。