浮点

时间:2024-11-24 00:23:46编辑:小早

浮点数是什么?

浮点数,是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学计数法。有理数的认识:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

浮点数表示方法

浮点数是一种公式化的表达方式,用来近似表示实数,并且可以在表达范围和表示精度之间进行权衡(因此被称为浮点数)。浮点数通常被表示为:N=M×R^E比如:12.345=1.2345×10^1其中,M(Mantissa)被称为浮点数的 尾数 ,R(Radix)被称为阶码的 基数 ,E(Exponent)被称为阶的 阶码 。计算机中一般规定R为2、8或16,是一个确定的常数,不需要在浮点数中明确表示出来。因此,在已知标准下,要表示浮点数。一是要给出尾数M的值,通常用定点小数形式表示,它决定了浮点数的表示精度,即可以给出的有效数字的位数。二是要给出阶码,通常用定点整数形式表示,它指出的是小数点在数据中的位置,决定了浮点数的表示范围。因此,在计算机中,浮点数通常被表示成如下格式:(假定为32位浮点数,基为2,其中最高位为符号位)。浮点数的规格化表示按照上面的指数表示方法,一个浮点数会有不同的表示:0.3×10^0;0.03×10^1;0.003×10^2;0.0003×10^3。为了提高数据的表示精度同时保证数据表示的唯一性,需要对浮点数做规格化处理。在计算机内,对非0值的浮点数,要求尾数的绝对值必须大于基数的倒数,即|M|≥1/R。即要求尾数域的最高有效位应为1,称满足这种表示要求的浮点数为规格化表示:把不满足这一表示要求的尾数,变成满足这一要求的尾数的操作过程,叫作浮点数的规格化处理,通过尾数移位和修改阶码实现。

上一篇:热轧镀锌

下一篇:没有了