实变函数
要弄清这个问题你得先弄明白函数列收敛和函数列一致收敛。在这里我就不复制定义了。首先关于函数列收敛:对于一列函数列 {fn(x)},当给定一x时(也就是让x取一个定值),则函数列fn(x)},就变成了一个数列了。类如函数列 fn(x)=x^n(x的n次方),当给定x=2时,fn(x)=2^n(2的n次方),,这就是一个数列了,当这个数列{2^n}收敛,就说函数列{fn(x)}在x=2收敛;当这个数列{2^n}不收敛,就说函数列{fn(x)}在x=2发散的。对于函数列 fn(x)=x^n(x的n次方),当x=1时收敛;当x=2时发散。弄清上面了,函数列几乎处处收敛就很容易了。函数列几乎处处收敛是指:使得函数列不收敛的所有点组成的集合的测度(Lebesgue测度)为0。通俗的说就是不收敛的点不多,测度为0,可以忽略。除去不收敛点,剩下的点都是使得函数列收敛,所以说函数列“几乎处处”收敛(因为测度为0)。一致收敛是一样的 我只是写一下意思,具体的定义还得看教材,希望对你后帮助
复变函数与实变函数的区别是什么?
联系:都是基于微积分的进一步发展产生,都是为了研究集论。区别如下:一、指代不同1、实变函数:以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支。2、复变函数:是指以复数作为自变量和因变量的函数 ,而与之相关的理论就是复变函数论二、内容不同1、实变函数:是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。2、复变函数:主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。三、发展不同1、实变函数:是微积分学的进一步发展,它的基础是点集论。实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集一个数量上的概念。2、复变函数:研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。参考资料来源:百度百科-实变函数参考资料来源:百度百科-复变函数
数学分析和实变函数的区别与联系
数学分析和实变函数之间有3点不同,相关介绍具体如下:一、两者的研究内容不同:1、数学分析的研究内容:研究函数、极限、微积分、级数。2、实变函数的研究内容:研究内容包括实值函数的连续性质、微分理论、积分理论和测度论等。二、两者的意义不同:1、数学分析的意义:数学分析的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。2、实变函数的意义:为微积分学的进一步发展,它的基础是点集论。所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。三、两者的实质不同:1、数学分析的实质:分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。2、实变函数的实质:以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。参考资料来源:百度百科-实变函数(数学学科术语)参考资料来源:百度百科-数学分析(数学基础分支)