汽轮机运行

时间:2024-11-06 15:49:19编辑:小早

汽轮机的主蒸汽温度压力变化对汽轮机运行有何影响?

主蒸汽温度压力变化对汽轮机运行的影响有:1、主蒸汽压力升高:在机组额定功率下初压升高后蒸汽流量有所减少,各监视段压力相应降低,各中间级焓降基本保持不变,因此主蒸汽流量减少各中间级动叶应力均有所下降,隔板的压差和轴向推力也都有所减少。调节级前后压差虽有上升,但其危险工况不在额定负荷,因此调节级和中间各级在主蒸汽压力上升时都是安全的。对于末几级叶片,由于前后压差的减小(级前压力减小),级的焓降减少,从强度观点看末几级叶片也是安全的。当然,主蒸汽压力也不能过高,否则有可能造成机组过负荷,隔板、动叶过负荷及机组轴向位移大、推力轴承故障等不安全情况的发生。2、主蒸汽压力下降:在主蒸汽压力下降后机组仍要发出额定功率,则主蒸汽流量会相应增加。因此会引起非调节级各级级前压力升高,而末几级焓降增大,因此非调节级各级的负荷都有所增加,末几级过负荷最为严重,全机的轴向推力也相应增大。因此运行中主蒸汽压力下降机组应适当带负荷。3、主蒸汽温度升高:主蒸汽温度升高从经济性角度来看对机组是有利的,它不仅提高了循环热效率,而且减少了汽轮机的排汽湿度。但从安全角度来看,主蒸汽温度的上升会引起金属材料性能恶化缩短某些部件的使用寿命,如主汽阀、调节阀、轴封、法兰、螺栓以及高压管道等。对于超高参数机组,即使主蒸汽温度上升不多也可能引起金属急剧的蠕变,使许用应力大幅度的降低。因此绝大多数情况下不允许升高初温运行的。4、主蒸汽温度降低:在机组额定负荷下主蒸汽温度下降将会引起蒸汽流量增大,各监视段压力上升。此时调节级是安全的,但是非调节级尤其是最末几级焓降和主蒸汽流量同时增大将产生过负荷,是比较危险的。同时,蒸汽温度下降会引起末几级叶片湿度的增加,增大了湿汽损失,同时也加剧了末几级叶片的冲蚀作用,直接威胁倒汽轮机的安全运行。因此,在主蒸汽温度降低的同时应降低压力,是汽轮机热力过程线尽量与设计工况下的热力过程线重合,以提高机组排汽干度。因此机组的功率限制较大,必要时应申请减负荷运行。5、当使用射汽抽气时,应先进行蒸汽暖管,再投入主抽气器和启动抽气器。现在一般在我国都采用射水抽气器,应先启动射水泵,射水泵启动前应作联动试验,正常后使一台运行一台备用,以使凝汽器逐渐建立起真空。机组启动时,真空值应高一些,以减少汽轮机转子冲动阻力和启动汽耗,另外排汽温度低,对刚建投运的凝汽器也较为有利。但真空值也不易过高,因真空过高会延长启动时间,主要因为真空值过高时,所需进汽量少,对汽轮机加热不利。目前我国启动真空一般为350-450mmHg。扩展资料:主汽温控制方法常规的主汽温控制方法分为导前汽温微分信号的双冲量汽温控制、串级汽温控制、分段汽温控制及相位补偿汽温控制几种。但是,随着机组容量的逐渐增大,常规控制方法已经不能得到足够满意的控制质量,同时,由于工业过程逐渐复杂化,单一控制技术也远远无法达到要求。因此,结合先进的控制理论和控制算法将成为今后研究的一大趋势。近几年已经出现了一些相类似的控制方法,主要有以下两类:一类是先进控制算法与传统控制方法相结合,另一类是先进控制算法之间的结合。主要包括 :1、Smith预估控制及其改进型。2、基于神经网络理论的各种控制策略,诸如单神经元控制器取代主蒸汽温度串级PID控制中主调节器的策略、基于BP神经网络提出主蒸汽温度的串级智能控制等。3、基于模糊控制理论的各种控制策略,诸如主蒸汽温度的模糊PID控制、模糊控制与基于专家系统整定的串级PID控制相结合的复合控制策略,主蒸汽温度的Fuzzy-PI复合控制策略等。4、基于状态反馈的控制策略,例如:基于现代控制理论中状态反馈控制原理的分级控制方法、状态反馈控制与串级PID控制相结合的主蒸汽温度控制策略、将状态反馈引入到锅炉主蒸汽温度中的一种多回路串级控制方法等。5、其它控制策略,诸如基于鲁棒控制原理改进主蒸汽温度串级PID控制策略并指出在DCS系统中的实现方法、用预测智能控制器作为串级控制的主调节器以改善主蒸汽温度的迟延特性等。我们所接触的是一个复杂多变的系统,难以建立被控对象的精确模型,而传统控制方法往往需要建立一个精确的数学模型。同时,由于一些被控对象带有大迟延和大惯性的动态特性,因而即使建立了数学模型,通常也不如一个有经验的操作人员进行手动控制效果好。从20世纪七十年代开始,生物控制理论逐渐引起研究者的重视并迅速发展。目前神经网络控制已经发展得比较成熟,但是基于神经内分泌系统的生物智能控制理论研究才刚刚起步。作为人体各种激素调节中心,神经内分泌系统具有较好的稳定性和适应性,通过将模糊理论与神经内分泌反馈调节机制算法相结合,优势互补,并应用于PID控制器中,可以对锅炉主汽温系统的对象特性和一般控制规律进行分析。参考资料:百度百科-主气温控制

汽轮机主蒸汽温度压力对汽轮机的运行有哪些影响?

  主蒸汽温度压力变化对汽轮机运行的影响有:
  1.主蒸汽压力升高:在机组额定功率下初压升高后蒸汽流量有所减少,各监视段压力相应降低,各中间级焓降基本保持不变,因此主蒸汽流量减少各中间级动叶应力均有所下降,隔板的压差和轴向推力也都有所减少。调节级前后压差虽有上升,但其危险工况不在额定负荷,因此调节级和中间各级在主蒸汽压力上升时都是安全的。对于末几级叶片,由于前后压差的减小(级前压力减小),级的焓降减少,从强度观点看末几级叶片也是安全的。当然,主蒸汽压力也不能过高,否则有可能造成机组过负荷,隔板、动叶过负荷及机组轴向位移大、推力轴承故障等不安全情况的发生。
  2.主蒸汽压力下降:在主蒸汽压力下降后机组仍要发出额定功率,则主蒸汽流量会相应增加。因此会引起非调节级各级级前压力升高,而末几级焓降增大,因此非调节级各级的负荷都有所增加,末几级过负荷最为严重,全机的轴向推力也相应增大。因此运行中主蒸汽压力下降机组应适当带负荷。
  3.主蒸汽温度升高:主蒸汽温度升高从经济性角度来看对机组是有利的,它不仅提高了循环热效率,而且减少了汽轮机的排汽湿度。但从安全角度来看,主蒸汽温度的上升会引起金属材料性能恶化缩短某些部件的使用寿命,如主汽阀、调节阀、轴封、法兰、螺栓以及高压管道等。对于超高参数机组,即使主蒸汽温度上升不多也可能引起金属急剧的蠕变,使许用应力大幅度的降低。因此绝大多数情况下不允许升高初温运行的。
  4.主蒸汽温度降低:在机组额定负荷下主蒸汽温度下降将会引起蒸汽流量增大,各监视段压力上升。此时调节级是安全的,但是非调节级尤其是最末几级焓降和主蒸汽流量同时增大将产生过负荷,是比较危险的。同时,蒸汽温度下降会引起末几级叶片湿度的增加,增大了湿汽损失,同时也加剧了末几级叶片的冲蚀作用,直接威胁倒汽轮机的安全运行。因此,在主蒸汽温度降低的同时应降低压力,是汽轮机热力过程线尽量与设计工况下的热力过程线重合,以提高机组排汽干度。因此机组的功率限制较大,必要时应申请减负荷运行。
  当使用射汽抽气时,应先进行蒸汽暖管,再投入主抽气器和启动抽气器。现在一般在我国都采用射水抽气器,应先启动射水泵,射水泵启动前应作联动试验,正常后使一台运行一台备用,以使凝汽器逐渐建立起真空。机组启动时,真空值应高一些,以减少汽轮机转子冲动阻力和启动汽耗,另外排汽温度低,对刚建投运的凝汽器也较为有利。但真空值也不易过高,因真空过高会延长启动时间,主要因为真空值过高时,所需进汽量少,对汽轮机加热不利。目前我国启动真空一般为350-450mmHg。


汽轮机运行前需要检查什么项目?

汽轮机本体的检查(1)前箱:汽轮机总膨胀指示、回油温度、回油量、振动情况、同步器位置、油动机位置轮转角、调节汽门有无卡涩、油动机齿条工作是否正常和清洁。(2)轴承:所有轴瓦的回油温度、油量、振动情况、油挡是否漏油。(3)汽缸:轴封供汽、机组运转声音、相对膨胀、排汽缸振动情况及排汽温度。(4)发电机、励磁机:出入口风温、冷却水压、各冷却器温度、密封瓦油压及回油温度、回油量、外壳有无漏油、双水内冷发电机轴端进水压力以及有无泄漏。(5)盘车设备:手柄应放在退出工作位置,并确证工作电源正常。(6)自动主汽门:主汽门位置指示、冷却水是否畅通。(7)主表盘:汽、水、油系统各压力和真空指示值、相对胀差、轴向位移指示。(8)氢气盘:氢压、密封油压、漏氢情况以及差压阀、平衡阀工作情况。


汽轮机小知识

1. 汽轮机基础知识
;汽轮机基本概念知识

1、水的临界压力

当水的压力达到225.65Kg/cm2、温度达到374.15℃时,水和蒸汽的密度就相同了,分不出水与蒸汽的界线,水在不发生汽化的情况下就变以为蒸汽,水不再用沸腾汽化的方式进行蒸发,这个压力就称为水的临界压力。

2、汽流速度相当于音速时蒸汽所处的状态称为临界状态,产生临界状态的截面称为临界截面,该截面上所有的参数均称为临界参数,即临界速度CC、临界压力PC、临界压力比εC、临界比容υC、临界流量GC等。



3、汽轮机的极限真空

1㎏蒸汽进入汽轮机后,由于蒸汽压力降为排汽压力,用来做功的有用热降为新蒸汽热量与排汽含热量之差,假定新蒸汽的压力和温度不变,则当凝汽器真空超高,排汽的含热量越小,这样,同1㎏蒸汽用来做功的热量就增加了。所以,当真空高时就可以使汽轮机的耗汽量减小。

但真空的提高不是没有限制的,真空的提高受到末级叶片膨胀能力的限制,与此能力相当的真空就叫做极限真空,超过这一极限真空而再提高时,也不能使汽轮机负荷继续增加而获得经济效益。

4、汽轮机的差胀

汽缸与转子之间的相对膨胀之差叫差胀。正差胀大说明汽缸胀得慢,转子胀得快,负差胀说明汽缸未收缩转子已收缩了,或汽缸胀得快,转子胀得慢,这种现象发生在有法兰加热装置的汽轮机上。

5、汽轮机的临界转速

由于轴的重心和转子的重心之间有偏心,因此在轴转动时就产生离心力,这是造成汽轮机振动和轴弯曲的主要原因。转子旋转时,重心随着轴中心线而转动,当轴每转一周,就产生一次振动,这是离心力引起的对轴的强迫振动,每秒钟产生的对轴的强迫振动次数叫做强迫振动的频率。

当转子的强迫振动频率和转子的自由振动频率相重合时,也就是离心力方向变动的次数引起转子强迫振动频率和自由振动频率相同或成比例时,就产生共振,这时转子的振动特别大,这一转速就称为转子的临界转速。

6、过冷度

汽轮机排汽温度与凝结水温度之差叫做过冷度。过冷度大,要降低汽轮机的经济性,因凝结水温度低,被冷却水带走热量就多,热损失就大。

7、冷却倍率

每吨排汽凝结时所需要的冷却水量,称为冷却倍率=冷却水量/排汽量。

一般凝汽器的冷却倍率取50~60,还有更大的。

8、排汽温度与真空之间的关系

水的沸腾温度与水表面上的气体(如:空气、水蒸汽)压力有一定关系。

水表面的空气压力越大,水的沸点也越高,水的温度达到沸点后,水若继续受热就会变为同温度的水蒸汽,水在变为水蒸汽的过程中,水的温度并不升高,在此温度的水称为饱和水,同温度的水蒸汽称为饱和蒸汽。

为什么在汽轮机的排气室中温度只有几十度还会有水蒸汽呢?这是因为排气室中的压力比大气压力低,所以水蒸汽的饱和温度出很低,虽然只有几十度,水仍然是汽态。

我们说凝汽
2. 汽轮机基础知识
将蒸汽的能量转换成为机械功的旋转式动力机械。

又称蒸汽透平。主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。

还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要 。 汽轮机是将蒸汽的能量转换为机械功的旋转式动力机械,是蒸汽动力装置的主要设备之一。

汽轮机是一种透平机械,又称蒸汽透平。 公元一世纪时,亚历山大的希罗记述了利用蒸汽反作用力而旋转的汽转球,又称为风神轮,这是最早的反动式汽轮机的雏形;1629年意大利的布兰卡提出由一股蒸汽冲击叶片而旋转的转轮。

19世纪末,瑞典拉瓦尔和英国帕森斯分别创制了实用的汽轮机。拉瓦尔于1882年制成了第一台5马力(3.67千瓦)的单级冲动式汽轮机,并解决了有关的喷嘴设计和强度设计问题。

单级冲动式汽轮机功率很小,现在已很少采用。 20世纪初,法国拉托和瑞士佐莱分别制造了多级冲动式汽轮机。

多级结构为增大汽轮机功率开拓了道路,已被广泛采用,机组功率不断增大。帕森斯在1884年取得英国专利,制成了第一台10马力的多级反动式汽轮机,这台汽轮机的功率和效率在当时都占领先地位。

20世纪初,美国的柯蒂斯制成多个速度级的汽轮机,每个速度级一般有两列动叶,在第一列动叶后在汽缸上装有导向叶片,将汽流导向第二列动叶。现在速度级的汽轮机只用于小型的汽轮机上,主要驱动泵、鼓风机等,也常用作中小型多级汽轮机的第一级。

与往复式蒸汽机相比,汽轮机中的蒸汽流动是连续的、高速的,单位面积中能通过的流量大,因而能发出较大的功率。大功率汽轮机可以采用较高的蒸汽压力和温度,故热效率较高。

19世纪以来,汽轮机的发展就是在不断提高安全可靠性、耐用性和保证运行方便的基础上,增大单机功率和提高装置的热经济性。 汽轮机的出现推动了电力工业的发展,到20世纪初,电站汽轮机单机功率已达10兆瓦。

随着电力应用的日益广泛,美国纽约等大城市的电站尖峰负荷在20年代已接近1000兆瓦,如果单机功率只有10兆瓦,则需要装机近百台,因此20年代时单机功率就已增大到60兆瓦,30年代初又出现了165兆瓦和208兆瓦的汽轮机。 此后的经济衰退和第二次世界大战期间爆发,使汽轮机单机功率的增大处于停顿状态。

50年代,随着战后经济发展,电力需求突飞猛进,单机功率又开始不断增大,陆续出现了325~600兆瓦的大型汽轮机;60年代制成了1000兆瓦汽轮机;70年代,制成了1300兆瓦汽轮机。现在许多国家常用的单机功率为300~600兆瓦。

汽轮机在社会经济的各部门中都有广泛的应用。汽轮机种类很多,并有不同的分类方法。

按结构分,有单级汽轮机和多级汽轮机;各级装在一个汽缸内的单缸汽轮机,和各级分装在几个汽缸内的多缸汽轮机;各级装在一根轴上的单轴汽轮机,和各级装在两根平行轴上的双轴汽轮机等。 按工作原理分,有蒸汽主要在各级喷嘴(或静叶)中膨胀的冲动式汽轮机;蒸汽在静叶和动叶中都膨胀的反动式汽轮机;以及蒸汽在喷嘴中膨胀后的动能在几列动叶上加以利用的速度级汽轮机。

按热力特性分,有为凝汽式、供热式、背压式、抽汽式和饱和蒸汽汽轮机等类型。凝汽式汽轮机排出的蒸汽流入凝汽器,排汽压力低于大气压力,因此具有良好的热力性能,是最为常用的一种汽轮机;供热式汽轮机既提供动力驱动发电机或其他机械,又提供生产或生活用热,具有较高的热能利用率;背压式汽轮机的排汽压力大于大气压力的汽轮机;抽汽式汽轮机是能从中间级抽出蒸汽供热的汽轮机;饱和蒸汽轮机是以饱和状态的蒸汽作为新蒸汽的汽轮机。

汽轮机的蒸汽从进口膨胀到出口,单位质量蒸汽的容积增大几百倍,甚至上千倍,因此各级叶片高度必须逐级加长。大功率凝汽式汽轮机所需的排汽面积很大,末级叶片须做得很长。

汽轮机装置的热经济性用汽轮机热耗率或热效率表示。汽轮机热耗率是每输出单位机械功所消耗的蒸汽热量,热效率是输出机械功与所耗蒸汽热量之比。

对于整个电站,还需考虑锅炉效率和厂内用电。因此,电站热耗率比单独汽轮机的热耗率高,电站热效率比单独汽轮机的热效率低。

一座汽轮发电机总功率为1000兆瓦的电站,每年约需耗用标准煤230万吨。如果热效率绝对值能提高1%,每年可节约标准煤 6万吨。

因此,汽轮机装置的热效率一直受到重视。为了提高汽轮机热效率,除了不断改进汽轮机本身的效率,包括改进各级叶片的叶型设计(以减少流动损失)和降低阀门及进排汽管损失以外,还可从热力学观点出发采取措施。

根据热力学原理,新蒸汽参数越高,热力循环的热效率也越高。早期汽轮机所用新蒸汽压力和温度都较低,热效率低于20%。

随着单机功率的提高,30年代初新蒸汽压力已提高到3~4兆帕,温度为400~450℃。随着高温材料的不断改进,蒸汽温度逐步提高到535℃,压力也提高到6~12.5兆帕,个别的已达16兆帕,热效率达30%以上。

50年代初,已有采用新蒸汽温度为600℃的汽轮机。以后又有新蒸汽温度为650℃的汽轮机。

现代大型汽轮机按照其输出功率的不同,采用的新蒸汽压力又可以分为各个压力等级,通常采用新蒸汽压力24.5~26兆帕。
3. 汽轮机基础知识
汽轮机基本概念知识

1、水的临界压力

当水的压力达到225.65Kg/cm2、温度达到374.15℃时,水和蒸汽的密度就相同了,分不出水与蒸汽的界线,水在不发生汽化的情况下就变以为蒸汽,水不再用沸腾汽化的方式进行蒸发,这个压力就称为水的临界压力。

2、汽流速度相当于音速时蒸汽所处的状态称为临界状态,产生临界状态的截面称为临界截面,该截面上所有的参数均称为临界参数,即临界速度CC、临界压力PC、临界压力比εC、临界比容υC、临界流量GC等。

3、汽轮机的极限真空

1㎏蒸汽进入汽轮机后,由于蒸汽压力降为排汽压力,用来做功的有用热降为新蒸汽热量与排汽含热量之差,假定新蒸汽的压力和温度不变,则当凝汽器真空超高,排汽的含热量越小,这样,同1㎏蒸汽用来做功的热量就增加了。所以,当真空高时就可以使汽轮机的耗汽量减小。

但真空的提高不是没有限制的,真空的提高受到末级叶片膨胀能力的限制,与此能力相当的真空就叫做极限真空,超过这一极限真空而再提高时,也不能使汽轮机负荷继续增加而获得经济效益。

4、汽轮机的差胀

汽缸与转子之间的相对膨胀之差叫差胀。正差胀大说明汽缸胀得慢,转子胀得快,负差胀说明汽缸未收缩转子已收缩了,或汽缸胀得快,转子胀得慢,这种现象发生在有法兰加热装置的汽轮机上。

5、汽轮机的临界转速

由于轴的重心和转子的重心之间有偏心,因此在轴转动时就产生离心力,这是造成汽轮机振动和轴弯曲的主要原因。转子旋转时,重心随着轴中心线而转动,当轴每转一周,就产生一次振动,这是离心力引起的对轴的强迫振动,每秒钟产生的对轴的强迫振动次数叫做强迫振动的频率。

当转子的强迫振动频率和转子的自由振动频率相重合时,也就是离心力方向变动的次数引起转子强迫振动频率和自由振动频率相同或成比例时,就产生共振,这时转子的振动特别大,这一转速就称为转子的临界转速。

6、过冷度

汽轮机排汽温度与凝结水温度之差叫做过冷度。过冷度大,要降低汽轮机的经济性,因凝结水温度低,被冷却水带走热量就多,热损失就大。

7、冷却倍率

每吨排汽凝结时所需要的冷却水量,称为冷却倍率=冷却水量/排汽量。

一般凝汽器的冷却倍率取50~60,还有更大的。

8、排汽温度与真空之间的关系

水的沸腾温度与水表面上的气体(如:空气、水蒸汽)压力有一定关系。

水表面的空气压力越大,水的沸点也越高,水的温度达到沸点后,水若继续受热就会变为同温度的水蒸汽,水在变为水蒸汽的过程中,水的温度并不升高,在此温度的水称为饱和水,同温度的水蒸汽称为饱和蒸汽。

为什么在汽轮机的排气室中温度只有几十度还会有水蒸汽呢?这是因为排气室中的压力比大气压力低,所以水蒸汽的饱和温度出很低,虽然只有几十度,水仍然是汽态。

我们说凝汽
4. 汽轮机运行要知道那些知识
机组负荷,周波,转速,进汽压力、温度 排气压力也就是凝汽器真空,安全油压,润滑油压 一二次脉冲油压,润滑油温,各个辅机运行电流,出口压力,调节级及各级抽气压力等等。

保养

1、每15天至少1次,启动润滑油泵、顶轴油泵、发电机密封油泵、调节系统油泵,并通过盘车装置盘车15分钟;

2、每15天至少1次,启动调节系统的油泵,并开、关汽轮机配汽系统的所有油动机;

3、如果汽轮机停运超过10天,应根据专门程序,防止在汽轮机装置和汽轮机通流部分形成和积聚水份。

4、当汽轮机长期处于盘车状态时,每班(8个小时)应至少一次,启动调节系统的电动油泵15分钟,向调速器轴承的备用润滑油箱充油。


上一篇:生逢灿烂

下一篇:没有了