微粒群算法

时间:2024-11-03 22:02:53编辑:小早

微粒群算法的原理

PSO算法是基于群体的,根据对环境的适应度将群体中的个体移动到好的区域。然而它不对个体使用演化算法,而是将每个个体看作是D维搜索空间中的一个没有体积的微粒(点),在搜索空间中以一定的速度飞行,这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整。第i个微粒表示为Xi = (xi1,xi2,…,xiD),它经历过的最好位置(有最好的适应值)记为Pi = (pi1,pi2,…,piD),也称为pbest。在群体所有微粒经历过的最好位置的索引号用符号g表示,即Pg,也称为gbest。微粒i的速度用Vi = (vi1,vi2,…,viD)表示。对每一代,它的第d维(1 ≤ d ≤ D)根据如下方程进行变化:vid = w*vid+c1*rand()*(pid-xid)+c2*Rand()*(pgd-xid)(1a)xid = xid+vid (1b)其中w为惯性权重(inertia weight),c1和c2为加速常数(acceleration constants),rand()和Rand()为两个在[0,1]范围里变化的随机值。此外,微粒的速度Vi被一个最大速度Vmax所限制。如果当前对微粒的加速导致它的在某维的速度vid超过该维的最大速度vmax,d,则该维的速度被限制为该维最大速度vmax,d。对公式(1a),第一部分为微粒先前行为的惯性,第二部分为“认知(cognition)”部分,表示微粒本身的思考;第三部分为“社会(social)”部分,表示微粒间的信息共享与相互合作。“认知”部分可以由Thorndike的效应法则(law of effect)所解释,即一个得到加强的随机行为在将来更有可能出现。这里的行为即“认知”,并假设获得正确的知识是得到加强的,这样的一个模型假定微粒被激励着去减小误差。“社会”部分可以由Bandura的替代强化(vicarious reinforcement)所解释。根据该理论的预期,当观察者观察到一个模型在加强某一行为时,将增加它实行该行为的几率。即微粒本身的认知将被其它微粒所模仿。PSO算法使用如下心理学假设:在寻求一致的认知过程中,个体往往记住自身的信念,并同时考虑同事们的信念。当其察觉同事的信念较好的时候,将进行适应性地调整。

微粒群算法的介绍

微粒群算法,又称粒子群优化(Particle Swarm Optimization, PSO),是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群符合M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

粒子群算法的优缺点

优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。扩展资料:注意事项:基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。参考资料来源:百度百科-粒子群算法

上一篇:蔡美儿

下一篇:没有了