七年级下册数学题

时间:2024-11-01 06:45:38编辑:小早

求七年级下册数学应用题100道【50道也可以】,带答案的【尽量字数题目少点】,急用,谢谢~

很不容易的
、王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用的促销方式不同,在甲商场一次性购物超过100元,超过的部分8折优惠;在乙商场一次性购物超过50元,超过的部分9折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?
解 :设王女士在甲商场购物超过X元就比在乙商场购物优惠。
(X-100)×80%+100<50+(X-50)×90%
0.8X-80+100<50+0.9X-45
移项 ﹣0.1X<-15
X>150
2、动物园里,两只狒狒在玩跷跷板,体重33kg的大狒狒把小狒狒翘上了天,吓的小狒狒直叫,这时,一直体重是小狒狒一半的小猴子从树上跳到了小狒狒的身上,只见大狒狒离开了地面,被翘了起来,你知道小猴子有多重吗?
解:设小猴子的体重为X kg,
33≤X+2X
33≤3X
X≥11
故X≥11kg
3、某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?
设小组成员有x名
5x=4x+15+9
5x-4x=15+9
4.某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问
(1) 初一年级人数是多少?原计划租用45座客车多少辆?
解:租用45座客车x辆,租用60座客车(x-1)辆,
45x+15=60(x-1)
解之得:x=5 45x+15=240(人)
答:初一年级学生人数是240人,
计划租用45座客车为5辆
5将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?
解;设为XH
1/5+1/20X+1/12X=1
8/60X=4/5
X=6
甲,乙两人合作的时间是6H.
6甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()
设甲数为4X.则乙为3X.丙为3X-2.
4X+3X+3X-2=53
10X=53+2
10X=55
X=5.5
3X=16.5
3X-2=16.5-2=14.5
乙为16.5,丙为14.5
7粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?
设停电x小时. 粗蜡烛每小时燃烧1/5,细蜡烛是1/4
1-1/5X=4(1-1/4)
1-1/5X=4-X
-1/5+X=4-1
4/5X=3
X=15/4
8.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
设十位数为x
则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171
化简得
424x=1272
所以:x=3
则这个三位数为437
9一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?
解:设⑵班捐x册
3x=152+x+3xX40%
3x=152+x+6/5x
3x-x-6/5x=152
4/5x=152
x=190…⑵班
190X3=570(本)
10.已知甲乙两人共同完成一件工作需12天,若甲乙单独完成这件工作,则乙所需的天数是甲所需天数的1.5倍。求甲、乙单独完成这件工作各需多少天?
设甲为x天,则乙为1.5x,
1/x+1/1.5x=1/12,
过程,两边同乘x,得1+1/1.5=x/12,得x=20
11.一项工程,若甲队承包刚好在规定日期内完成,乙队承包则要超过3天完成。结果甲、乙两队合作2天,剩下部分由乙队单独做,刚好在规定日期完成。求规定日期是多少天?
设日期为x天
甲工作效率为1/x,乙为1/(x+3),
则方程为,(1/x+1/(x+3))*2+(x-2)/(x+3)=1,
过程,2/x+2/(x+3)+(x-2)/(x+3)=1
x/(x+3)=(x-2)/x
x=6
12某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?

解: 设分配x人去生产螺栓,则(28-x)人生产螺母
因为每个螺栓要有两个螺母配套,所以螺栓数的二倍等于螺母数

2×12x=18(28-x)
解得 x=12 所以28-x=28-12=16
即应分配12人生产螺栓,16人生产螺母
13甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?


可以假定甲列车不动,则乙列车相对甲列车的速度就为60+75=135千米/小时;两车从车头相遇到车尾相离一共走了150+120=270米=0.27千米
则所求时间t=0.27/135=0.002小时
14现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
15甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
16.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
17甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
18.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
19.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2.4
即停电了2.4小时。
20某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。

根据题意得:【1-15%】X+【1+25%】【2300-X】=2300
解之得:931
答:下半年生产931台。
21甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288m
1-X/3=2[1-3X/8]
X=2.4
即停电了2.4小时。
20.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。
21小明与小聪两人同时在同一商店买粮食,小明每次购买100千克,小聪每次用去100元。但这两次购买粮食的单价不同。若规定:两次购买粮食的平均单价谁低,谁的购梁方式合算。则你能判断小明与小聪谁的购梁方式更合算吗?
一:
(1)甲乙两队合作效率1/6,乙丙合作效率1/10,甲丙合作效率(2/3)÷5=2/15
所以甲乙丙三队合作效率为(1/6+1/10+2/15)÷2=1/5
甲队单独完成全部工程需要1÷(1/5-1/10)=10天
乙队单独完成全部工程需要1÷(1/5-2/15)=15天
丙队单独完成全部工程需要1÷(1/5-1/6)=30天
(2)甲乙日工资和8700/6=1450元,乙丙日工资和9500/10=950元,甲丙日工资和5500/5=1100元
所以甲乙丙日工资和(1450+950+1100)÷2=1750元
所以甲日工资1750-950=800元,乙日工资1750-1100=650元,丙日工资1750-1450=300元
所以甲队单独完成全部工程需要10天,费用800×10=8000元
乙队单独完成全部工程需要15天,费用650×15=9750元
丙队单独完成全部工程需要30天,费用300×30=9000元
所以,若工期要求不超过15天完成全部工程,甲队单独完成此工程花钱最少。
或⑴单独做,三个队需要的天数。
甲:2÷(1/6+2/3÷5-1/10)=10天,
乙:1÷(1/6-1/10)=15天,
丙:1÷(1/10-1/15)=30天。
⑵首先丙队不能在15天内完成,因此排除丙队。
每两队每天工资和:
甲丙8700÷6=1450元;乙丙9500÷10=950元;甲丙5500÷5=1100元
甲乙单独每天工资:
甲队:(1100+1450-950)÷2=800元;乙队:1450-800=650元
因为800×10<650×15,所以找甲队花钱最少。
二:解:设招聘甲种工种的工人是x人,乙种工种人数nx(n=2),所招聘工人共需付月工资y元
那么y=600x+1000nx
因为随着乙种工种人数增加,所以当乙种工种人数是甲种工种人数的2倍(n=2)时,每月所付的工资最少。所以甲种工种招聘50人,乙种工种招聘100人可使每月所付的工资最少,最少工资是130000元。
三:1008>100×9=900元
1314÷9=112
解:设甲旅游团有x人,乙旅游团有112-x人。
11x+13(112-x)=1314
11x+1456-13x=1314
-2x+1456=1314
-2x=-142
x=71
112-x=112-71=41(人)
答:甲旅游团有71人,乙旅游团有41人。
四:
设每分钟增加旅客为x
(a+30x)/30=(a+10x)/20
得:x=a/30
每个检票口每分钟检票人数为:a/15
需要得检票口个数为:[a+5*(a/15)]/[(a/15)*5]=4个至于追加悬赏分与否随你吧
22某单位新盖了一座楼房,要从相距132米处的自来水主管道铺设水管,现有8米长与5米长的两种规格的水管可供选用。请你设计方案,如何选取这两种水管,才能恰好从主管道铺设到这座楼房?这样的方案有几种?若8米长的水管每根50元,5米长的水管每根35元,选哪种方案最省钱
解:设8米的水管X根,5米的水管Y根
8x+5y=132
解得:
x=4 y=20
x=9 y=12
x=14 y=4
由题意得,因为要使最省钱,所以当8米长的水管14根,5米长的水管4根时最省钱。
23已知方程组ax+by=c
a'x+b'y=c’
他的解为x=3
y=4

求方程组3ax+2by=5c 的解
3a'+2b'y=5c'
3ax+2by=5c
3a'+2b'y=5c' 两个式子都除以5
得3/5ax+2/5by=c
3/5a'x+2/5b'y=c'
把x=3
y=4分别带入原方程组
3/5xa+2/5yb=c
3a + 4b=c
3/5ya'+2/5yb'=c'
3a' + 4b'=c’
因为结果相同,字母相同,所以系数相同。
3/5x=3 x=5 2/5y=4 y=10
24为了拉动内需,山东省启动了“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型冰箱和Ⅱ型冰箱的数量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元。根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问启动活动后的第一个月销售给农户的1228台Ⅰ型和Ⅱ型冰箱,政府共补贴了多少元?(结果保留2个有效数字)
,解;设启动活动前一个月售出第一种冰箱x台那么第2种型号的售出了台。
然后列式;x乘以+乘以=1228
x=560
答;在启动活动前一个月,销售给农户的Ⅰ型冰箱为560台,销售给农户的Ⅱ型冰箱为960-560=400台。
,根据题意,首先算出启动活动后的第一个月的两种冰箱的销售量。
启动活动后的第一个月Ⅰ型冰箱的销售量:560x(1+30%)=728台
Ⅰ型冰箱农户补贴为:728x=217482.72元
启动活动后的第一个月Ⅱ型冰箱的销售量:400X=500台
Ⅱ型冰箱农户补贴为:500x=129935元
政府共补贴了多少元:2174852.72+129935=2304787.72保留两个有效数字为2300000
25为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍、建造新校舍。拆除旧校舍每平米需80元,建造新校舍每平米需700元。计划在年内拆除旧校舍共7200平方米,在实施中为扩大绿化面积,新建校舍只完成了80%,而拆除校舍超过10%,结果恰好完成了原计划的拆、建的总面积。 1.求原来计划拆建面积个多少平方米? 2.若绿化1平方米需200元,那么实际完成拆、建工程中结余资金能用来绿化大约多少平方米?
解:设拆x平方米,新建y平方米,则有等式:
x+y=7200.............(1)
1.1x+0.8y=7200.......(2)
(2)-(1)得 0.1x-0.2y=0,故x=2y,代入(1)式得 3y=7200
∴y=2400m²,x=7200-2400=4800m²
即原计划拆4800m²,新建2400m².
原计划资金4800×80+2400×700=2064000元=206.4万元
实际用资金1.1×4800×80+0.8×2400×700=1766400元=176.64万元
节约2064000-1766400=297600元
故可绿化面积297600/200=1488m²
26某中学建一栋4层的教学大楼,每层楼有8间教室,进这栋大楼共有四道门,其中两道正门大小相同,两道侧门也大小相同。安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。 1.求平均每分钟一道正门和一道侧门各可以通过多少名学生? 2.检查中发现,紧急情况时因学生拥挤,出门的效率降低20%。安全检查规定,在紧急情况下全大楼学生应在5分钟内通过这4道门。假设这栋教学大楼每间教室最多有45名学生,问:建造这4道门是否符合规定?请说明理由。
设平均每分钟一道正门和一道侧门各可以通过X、Y名学生
则 (X+2Y)*2=560
(X+Y)*4=800
得到 小门 Y=80,大门X=120
第二问
全楼总人数是 4*8*45=1440
而四道门5分内能通过的人数为=(2X+2Y)*5*(1-20%)=1600人
所以是合格的
27王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用的促销方式不同,在甲商场一次性购物超过100元,超过的部分8折优惠;在乙商场一次性购物超过50元,超过的部分9折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?

解 :设王女士在甲商场购物超过X元就比在乙商场购物优惠。
(X-100)×80%+100<50+(X-50)×90%
0.8X-80+100<50+0.9X-45
移项 ﹣0.1X<-15
X>150
28动物园里,两只狒狒在玩跷跷板,体重33kg的大狒狒把小狒狒翘上了天,吓的小狒狒直叫,这时,一直体重是小狒狒一半的小猴子从树上跳到了小狒狒的身上,只见大狒狒离开了地面,被翘了起来,你知道小猴子有多重吗?
解:设小猴子的体重为X kg,
33≤X+2X
33≤3X
X≥11
故X≥11kg
29. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
  解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x12=1,  解这个方程,15+14+x12=1      
12+15+5x=60 5x=33   ∴ x=335=635  答:略.
30. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
  (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
  (2)两车同时开出,相背而行多少小时后两车相距600公里?
  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
  此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。
(1)分析:相遇问题,画图表示为:

等量关系是:慢车走的路程+快车走的路程=480公里。  
解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480   
解这个方程,230x=390         ∴ x=11623答:略.
分析:相背而行,画图表示为:  

等量关系是:两车所走的路程和+480公里=600公里。
  解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x=1223 
  (3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
  解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600    50x=120 ∴ x=2.4   答:略.
分析:追及问题,画图表示为:

等量关系为:快车的路程=慢车走的路程+480公里。   
解:设x小时后快车追上慢车。由题意得,140x=90x+480  解这个方程,50x=480  ∴ x=9.6答:略.
分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480   50x=570  解得, x=11.4   
31一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
分析:探究题目中隐含的条件是关键,可直接设出成本为X元
进价折扣率标价优惠价利润
x元8折(1+40%)x元80%(1+40%)x 15元
等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15
解:设进价为X元,80%X(1+40%)—X=15,X=125 答:略.
32. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)
分析:等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为x,250(1+x)=252.7,x=0.0108
所以年利率为0.0108×2=0.0216
33、甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.
解析: 设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:甲、乙两人相遇前还相距3千米.根据题意,得
第二种情况:甲、乙两人是相遇后相距3千米.根据题意,得
答:甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度 分别为 千米/时和 千米/时.
裤子才能配套,用360米生产上衣,240米生产裤子才能配套,共能生产240套。4.某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元? 4.解:设该电器每台的进价为x元,定价为y元.答:该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.5.解:设用xm3木料做桌面,ym3木料做桌腿.(2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.5.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.5.:设用xm3木料做桌面,ym3木料做桌腿.2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.6.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离. 设A、B两地相距xkm,乙每小时走ykm,则甲每小时走(y+2)km7.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元问:1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?


七年级下册数学应用题

.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?



2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?



3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?



4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/




5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。





6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)





7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒




8.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.



9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?

10.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]


11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?


12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。


13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?



14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度.


16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?



18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?


19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语的有几人?

20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏


商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏



21.一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?

一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?

22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?




23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?

24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?



25.一支队伍长450m,以90/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2倍,此人往返共用多长时间?


90/分 是每分钟90米吗?下面就是以90米每分的速度计算的 90米/分=1.5米/秒
从排头到排尾的时间为t,

26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?




27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分.
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?
(2)两人同时同地同向跑,问几秒后两人第一次相遇时?


2、
应该是:“两人同时同地反向跑”吧


28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?



29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)



30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)


31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?



32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶内的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。


33.某班有45人,会下象棋的人数是会下围棋的3.5倍,2种都会或都不会的都是5人,求只会下围棋的人数。


34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
丙同学说得对,理由如下:



35.某水果批发市场香蕉的价格如下
购买香蕉数 不超过20kg 20kg以上但不超过40kg 40kg以上
每千克价格 6RMB 5RMB 4RMB
张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?




一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
答:车长150m,速度15m/s。

2、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车,乙组步行。车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。

设甲的速度为x,乙的速度为y
80x+80y=400
80y-80x=400
所以x=0 y=5(这道题时间为80秒与实际不符)
3、设A点距北山的距离为x,车返回到乙组时,乙距出发点距离为y
那么[x-4*(18-x-y)/60]/4=(18-y)/60
y/4=(18-x)/60+(18-x-y)/60
所以x=2 y=2
A点距离北山为2km

3. 牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?
设胜x场,负y场,则平11-x-y场
x=4y
3x+11-x-y=25

x=8
y=2

胜8场,负2场,平1场

4.课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?
设原来有x组。所以人数是8x
(x-2)12=8x
x=6
共有48人。

5.在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?

设飞机的平均速度为xkm/h,风速为ykm/h。
由题意可知,从A地到B地逆风,从B地到A地顺风。可列方程:
x+y=4/5.2
x-y=4/6.5
解得:x=9/13,y=1/13

6.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?

5*(1/3)+5*X=15*X
x=1/6

6. 一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?
设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:
(1/3)x/12=(1/3)x/[12*(5/4)]+1
化简得:
(5/3)x=(4/3)x+60
(1/3)x=60
x=180
所以麦地有180公顷.

7.甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?列【方程组】解答
解:设每分为X
2X+5X=14000
7X=14000
X=2000
2X=4000
5X=10000
所以甲分到4000元,乙分到10000元

8.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.
请列方程解应用题
设票价为x元
x+(35-20)*1.5%x=1323 x=1080
(应该是每千克按1.5%收费,不是15%) 不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.

9.商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?

解:设这两件商品售价都为x元
因为进价为,x/(1+25%)+x/(1-25%)=4/5x+4/3x=32/15x
售价为,x+x=2x
32/15x>2x 即进价>售价
所以亏损

10.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:
l+300=30v
300-l=10v
v=15m/s
l=150m
答:车长150m,速度15m/s。



某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
1.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?
设小组成员有x名
5x=4x+15+9
5x-4x=15+9
2.
某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问
(1) 初一年级人数是多少?原计划租用45座客车多少辆?
解:租用45座客车x辆,租用60座客车(x-1)辆,
45x+15=60(x-1)
解之得:x=5 45x+15=240(人)
答:初一年级学生人数是240人,
计划租用45座客车为5辆
3.将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?
解;设为XH
1/5+1/20X+1/12X=1
8/60X=4/5
X=6
甲,乙两人合作的时间是6H.
4.甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()
设甲数为4X.则乙为3X.丙为3X-2.
4X+3X+3X-2=53
10X=53+2
10X=55
X=5.5
3X=16.5
3X-2=16.5-2=14.5
乙为16.5,丙为14.5
5.粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?
设停电x小时. 粗蜡烛每小时燃烧1/5,细蜡烛是1/4
1-1/5X=4(1-1/4)
1-1/5X=4-X
-1/5+X=4-1
4/5X=3
X=15/4
6.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
设十位数为x
则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171
化简得
424x=1272
所以:x=3
则这个三位数为437

7.一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?
解:设⑵班捐x册
3x=152+x+3xX40%
3x=152+x+6/5x
3x-x-6/5x=152
4/5x=152
x=190…⑵班
190X3=570(本)

8.a b 两地相距31千米,甲从a地骑自行车去b地 一小时后乙骑摩托车也从a地去b地 已知甲每小时行12千米 乙每小时行28千米 问乙出发后多少小时追上甲
设乙出发x小时后追上甲,列方程
12(X+1)=28X X=0.75小时,即45分钟


七年级下册数学全等三角形难题,越难越好!!!号的题目加100悬赏分速求

1、三角形ABC,角A=60°,∠B、∠C的角平分线BE与CD交与点O求:OE=OD.

在BC上取点G,使得BD=BG
因为∠A=60°
所以∠BOC=120°
因为∠DOB=∠EOC(对顶角)
所以∠DOB=∠EOC=60°(360-120)/2
尤SAS得△DBO≌△BOG
所以DO=G0 ∠DOB=∠GOB=60°
所以∠GOC=∠BOG=60°
再由ASA得△OGC≌△OEC
所以OG=OE
因为OD=OG
所以OE=OD
2、已知在△ABC中,∠A=90°,AB=AC,AE⊥BD于E, ∠ADB=∠CDF,延长AE交BC于F,求证:D为AC的中点


作D关于BC的对称点G连接FG、CG
由于角ADB=角BAF 所以角FDC=角BAF
而角B=角C=45°
所以角AFB=180°-角B-角BAF=180°-角C-角CDF=角DFG
所以角AFD+角DFG=角AFD+角DFC+角AFB=180°
所以A、F、G共线
又因为角CAG=角ABD
角ACG=2*45°=90°=角BAD
所以三角形BAD全等于三角形ACG
所以CG=AD
又CG=DC
所以AD=DC

3.已知三角形ABC中,AD为BC边的中线,E为AC上一点,BE与AD交于F,若AE=EF,求证:AC=BF


延长AD到M使DM=AD,连BM,CM
∵AD=DM,BD=CD
∴ABMC为平行四边形(对角线互相平分)
∴AC‖BM,AC=BM(等于那个最后再用到)
∴∠DAC=∠DMB(∠DAC即∠EAF,∠DMB即∠BMF下面用到)(内错角相等)……①
在三角形AEF中,
∵AE=EF
∴∠EAF=∠EFA (等腰三角形)……②
又∵∠EFA=∠BFM(对顶角相等)……③
由①②③,得∠EAF=∠EFA=∠BFM=∠BMF
在三角形BFM中,
∵∠BFM=∠BMF
∴三角形BFM为等腰三角形,边BF=BM
由前面证得的AC=BM,得AC=BF

4.已知三角形ABC,AD为BC边上的中线,E为AC上一点,AD、BE交于点F,且AE=EF,请问BF=AC吗?

延长AD并过B点作AC的平行线,相交于G点
则AC//BG,AE=EF,
可得BF=BG
在三角形BDG和三角形CDA中
BD=CD,<ADC=<GDB,<DBG=<ACD,
两三角形全等
所以AC=BG=BF
5、在△ABC中,∠ACB是直角,∠B= 60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。证明FE=FD。
证明:作FM⊥BC于M,FN⊥AB于N
∵∠B=60°
∴∠MFN=120°
∵AD,CE是角平分线
∴FM=FN
∠FAC+∠FCA=15°+45°=60°
∴∠AFC=120°
∴∠EFD=120°
∴∠EFN=∠DFM
∵FE=FM,∠FNE=∠FMD
∴△FEN≌△FMD
∴FD=FE
6、点C在BD上,AC垂直BD于点C ,BE垂直AD于点E,CF=CD,那么AD和BF相等吗,为什么
相等。因为,AC垂直于BD、BE垂直于AD,所以,三角形ACD和三角形BCF是直角三角形。又因为,CF=CD,所以,三角形ACD和三角形BCF是全等(两角一边分别相等)。所以AD和BF相等
7、在三角形ABC中,AB=AC,AD是高,求证:角BAD=角CAD。

AB=AC,AD=AD,角ADB=角ADC=90度,所以三角形ABD全等于三角形ACD,所以角BAD=角CAD


人教版七年级下册数学期末测试卷

  希望你干自愿事,吃顺口饭,听轻松话,睡安心觉。使自己保持良好平静的心态,不要太紧张,相信你的梦想会实现的!祝你七年级数学期末考试成功!以下是我为大家整理的人教版七年级下册数学期末测试卷,希望你们喜欢。   人教版七年级下册数学期末测试题   一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)   1.8的立方根是【▲】   A.±2 B.2 C.-2 D.   2.下列图形中内角和等于360°的是【▲】   A.三角形 B.四边形 C.五边形 D.六边形   3.如图,数轴上所表示关于 的不等式组的解集是【▲】   A. ≥2 B. >2   C. >-1 D.-1< ≤2   4.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就   根据所学知识画出一个与书上完全一样的三角形,那么这   两个三角形完全一样的依据是【▲】   A.SSS B.SAS   C.AAS D.ASA   5.下列调查中,适合全面调查的是【▲】   A.长江某段水域的水污染情况的调查   B.你校数学教师的年龄状况的调查   C.各厂家生产的电池使用寿命的调查   D.我市居民环保意识的调查   6.不等式组 的整数解为【▲】   A.-1,1 B.-1,1,2 C.-1,0,1 D.0,1,2   7.试估计 的大小应在【▲】   A.7.5~8.0之间 B.8.0~8.5之间 C.8.5~9.0之间 D.9.0~9.5之间   8. 如图,把△ABC沿EF对折,叠合后的图形如图所示.   若∠A=60°,∠1=95°,则∠2的度数为【▲】   A.24° B.25°   C.30° D.35°   9. 如图,AD是 的中线,E,F分别是AD和AD   延长线上的点,且 ,连结BF,CE.下列说   法:①CE=BF;②△ABD和△ACD面积相等;   ③BF∥CE;④△BDF≌△CDE.其中正确的有【▲】   A.1个   B.2个   C.3个   D.4个   10.某粮食生产专业户去年计划生产水稻和小麦共15吨,   实际生产17吨,其中水稻超产10%,小麦超产15%,   设该专业户去年计划生产水稻x吨,生产小麦y吨,   则依据题意列出方程组是【▲】   A.    B.   C.   D.   二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)   11.16的值等于 ▲ .   12.一个多边形的每一个外角都等于24°,则这个多边形的边数为 ▲ .   13.二元一次方程3x+2y=10的非负整数解是 ▲ .   14.在△ABC中,AB = 5cm,BC = 8cm,则AC边的取值范围是 ▲ .   15.如果实数x、y满足方程组 ,那么x+y= ▲ .   16.点A在y轴上,距离原点5个单位长度,则点A的坐标为 ▲ .   三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)   17.(本题8分)   (1)计算: .   (2)解方程组:   18.(本题7分)解不等式组 请结合题意填空,完成本题的解答:   (1)解不等式①,得 ▲ ;   (2)解不等式②,得 ▲ ;   (3)把不等式①和②的解集在数轴上表示出来:   (4)原不等式组的解集是 ▲ .   19.(本题7分)   如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0)、B(6,0)、C(5,5).   (1)求三角形ABC的面积;   (2)如果将三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A1B1C1.画出三角形A1B1C1,并试写出A1、B1、C1的坐标.   20.(本题5分)   如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.   21.(本题7分)为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完善):   某校被调查学生选择社团意向统计表   选择意向 所占百分比   文学鉴赏 a   科学实验 35%   音乐舞蹈 b   手工编织 10%   其它 c   根据统计图表中的信息,解答下列问题:   (1)求本次调查的学生总人数及a,b,c的值;   (2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)   (3)若该校共有1200名学生,试估计全校选择“科学实验”社团的人数.   22.(本题5分)   P表示 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与 的关系式是: ,其中a、b是常数,n≥4.   (1)通过画图可得:   四边形时,P= ▲ (填数字);五边形时,P= ▲ (填数字);   (2)请根据四边形和五边形对角线交点的个数,结合关系式,求 的值.   (注:本题的多边形均指凸多边形)   23.(本题6分)   大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.   (1)求初期购得的原材料吨数与每天所耗费的原材料吨数;   (2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须   补充原材料?   24.(本题8分)如图1,AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).   (1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;   (2)如图2,将图1中的“AC⊥AB,BD⊥AB” 改为 “∠CAB=∠DBA=65°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.   附加题(满分20分)   25.(本题2分)如图,A、B两点的坐标分别为(2,4),   (6,0),点P是x轴上一点,且△ABP的面积为6,   则点P的坐标为 ▲ .   26.(本题2分)已知关于x的不等式组 的整   数解有且只有2个,则m的取值范围是 ▲ .   27.(本题8分)   在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC外侧作∠ACM,使得∠ACM= ∠ABC,点D是射线CB上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.   (1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是 ▲ ;   (2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.   28.(本题8分)直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B 在直线MN上运动.   (1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,直接写出∠AEB的大小.   (2)如图2,已知AB不平行CD, AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.   (3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO的度数.   人教版七年级下册数学期末测试卷参考答案   一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)   1 2 3 4 5 6 7 8 9 10   B B A D B C C B C C   二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)   11.4 12.15 13.   14.3< <13 15.2 16.(0,5)或(0,-5)   三、解答题(本大题共8小题,共52分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)   17.(1)解:原式=4+ -1-3……………………………2分   = ……………………………4分   (2)解:①×2得2x-2y=8 ③……………………………5分   ③+②得6x=6   x=1……………………………6分   把x=1代入①得y=-3 ……………………………7分   ∴方程的解为 ……………………………8分   18.(1) x≥3(2分) (2)x≤5(2分) (3)画图2分,图略   (4)3≤x≤5(1分)   19.(1)SABC =0.5×6×5=15……………………………2分   (2)画图略,……………………………4分   A1(2,3)、 B1(2,9)、 C1(7,8)……………7分   20.证明:∵∠1=∠2,∴∠CAB=∠EAD……………………………1分   在△CAB和△EAD中,   ……………………………3分   ∴△CAB≌△EAD,……………………………4分   ∴BC=DE.……………………………5分   21.解:(1)本次调查的学生总人数:70÷35%=200(人)………………1分   b=40÷200=20%,……………………………2分   c=10÷200=5%,……………………………3分   a=1-(35%+20%+10%+5%)=30%.………………………4分   (2)补全的条形统计图如图所示……………………………6分   (3)全校选择“科学实验”社团的学生人数约为1200×35%=420(人) …7分   22.解:(1)1;5 .(每空1分,共2分)   (2)将上述值代入公式可得: ………,4分   化简得: 解之得: …………………………5分   23.解:(1)设初期购得原材料a吨,每天所耗费的原材料为b吨,   根据题意得: ……………………………2分   解得 .   答:初期购得原材料45吨,每天所耗费的原材料为1.5吨…………3分   (2)设再生产x天后必须补充原材料,   依题意得: ,………………………5分   解得: .   答:最多再生产10天后必须补充原材料……………………………6分   24.解:(1)当t=2时,AP=BQ=2,BP=AC=6,……………………………1分   又∠A=∠B=90°,   在△ACP和△BPQ中,   ∴△ACP≌△BPQ(SAS)……………………………2分   ∴∠ACP=∠BPQ,   ∴∠APC+∠BPQ=∠APC+∠ACP=90°.   ∴∠CPQ=90°,……………………………3分   即线段PC与线段PQ垂直……………………………4分   (2)①若△ACP≌△BPQ,   则AC=BP,AP=BQ, ,   解得 ;……………………………6分   ②若△ACP≌△BQP,则AC=BQ,AP=BP,   ,解得 ;.……………………………8分   综上所述,存在 或 使得△ACP与△BPQ全等.   附加题(满分20分)   25.(3,0)、(9,0)……………………………2分   26. -5≤m<-4……………………………2分   27.(1)DF=2EC.……………………………2分   (2)DF=2EC;……………………………3分   理由如下:作∠PDE=22.5,交CE的延长线于P点,交CA的延长线于N,如图2所示:……………………………4分   ∵DE⊥PC,∠ECD=67.5,   ∴∠EDC=22.5°,∴∠PDE=∠EDC,∠NDC=45°,   ∴∠DPC=67.5°,   在△DPE和△DEC中, ,   ∴△DPE≌△DEC(AAS),   ∴PD=CD,PE=EC,∴PC=2CE,………5分   ∵∠NDC=45°,∠NCD=45°,   ∴∠NCD=∠NDC,∠DNC=90°,∴△NDC是等腰直角三角形   ∴ND=NC且∠DNC=∠PNC,   在△DNF和△PNC中, ,……………………………7分   ∴△DNF≌△PNC(ASA), ∴DF=PC,   ∴DF=2CE……………………………8分   28.(1)135°……………………………2分   (2)∠CED的大小不变,……………………………3分   延长AD、BC交于点F.   ∵直线MN与直线PQ垂直相交于O,   ∴∠AOB=90°,   ∴∠OAB+∠OBA=90°,   ∴∠PAB+∠MBA=270°,   ∵AD、BC分别是∠BAP和∠ABM的角平分线,   ∴∠BAD=12 ∠BAP ,∠ABC=12 ∠ABM ,   ∴∠BAD+∠ABC=12 (∠PAB+∠ABM)=135°,   ∴∠F=45°,……………………………5分   ∴∠FDC+∠FCD=135°,   ∴∠CDA+∠DCB=225°,   ∵DE、CE分别是∠ADC和∠BCD的角平分线,   ∴∠CDE+∠DCE=112.5°,   ∴∠E=67.5°……………………………6分   (3)60°或45°……………………………8分

人教版七年级数学下册期末测试题及答案

  距离数学期末考试还有不到一个月的时间了,七年级学生们在这段时间内突击做一些试题是非常有帮助的。我整理了关于人教版 七年级数学 下册期末测试题,希望对大家有帮助!


  人教版七年级数学下册期末试题
  一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)

  1.下列式子中,是一元一次方程的是( ).

  A. B. C. D.

  2.下列交通标志中,是轴对称图形的是(  ).

  3.下列现象中,不属于旋转的是( ).

  A.汽车在笔直的公路上行驶 B.大风车的转动

  C.电风扇叶片的转动 D.时针的转动

  4.若 ,则下列不等式中不正确的是( ).

  A. B. C. D.

  5.解方程 ,去分母后,结果正确的是( ).

  A. B.

  C. D.

  6.已知:关于 的一元一次方程 的解是 ,则 的值为( ).

  A. B.5 C. D.

  7.下列长度的各组线段能组成一个三角形的是( ).

  A.3 ,5 ,8 B.1 ,2 ,3

  C.4 ,5 ,10 D.3 ,4 ,5

  8.下列各组中,不是二元一次方程 的解的是( ).

  A. B. C. D.

  9.下列正多边形的组合中,能够铺满地面的是( ).

  A.正三角形和正五边形 B.正方形和正六边形

  C.正三角形和正六边形 D.正五边形和正八边形

  10.如果不等式组 的整数解共有3个,则 的取值范围是( ).

  A. B.

  C. D.

  二、填空题(本大题共6小题,每小题4分,共24分)

  11.当 时,代数式 与代数式 的值相等.

  12.已知方程 ,如果用含 的代数式表示 ,则 .

  13.二元一次方程组 的解是 .

  14. 的3倍与5的和大于8,用不等式表示为 .

  15.一个多边形的内角和是它的外角和的2倍,则这个多边形是 边形.

  16.如图,将直角 沿BC方向平移得到

  直角 ,其中 , ,

  ,则阴影部分的面积是 .

  三、解答题(本大题共10小题,共86分.解答应写出文字说明,证明过程或演算步骤)

  17.(6分)解方程: 18.(6分)解方程组:

上一篇:天然气罐车爆炸

下一篇:没有了