高中数学说课视频

时间:2024-07-12 16:53:39编辑:小早

高中数学1教学视频

  导语:数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。以下是我整理好分享给大家的关于高中必修一数学的知识汇总,欢迎大家前来教育查看!   高中高一数学必修1 各章知识点总结   第一章 集合与函数概念   一、集合有关概念   1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。   2、集合的中元素的三个特性:   1.元素的确定性;2.元素的互异性;3.元素的无序性   说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。   (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。   (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。   (4)集合元素的三个特性使集合本身具有了确定性和整体性。   3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}   1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   2.集合的表示方法:列举法与描述法。   注意啊:常用数集及其记法:   非负整数集(即自然数集)记作:N   正整数集N*或N+整数集Z有理数集Q实数集R   关于“属于”的概念   集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A   列举法:把集合中的元素一一列举出来,然后用一个大括号括上。   描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。   ①语言描述法:例:{不是直角三角形的三角形}   ②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}   4、集合的分类:   1.有限集含有有限个元素的集合   2.无限集含有无限个元素的集合   3.空集不含任何元素的集合例:{x|x2=-5}   二、集合间的基本关系   1.“包含”关系—子集   注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。   反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA   2.“相等”关系(5≥5,且5≤5,则5=5)   实例:设A={x|x2-1=0}B={-1,1}“元素相同”   结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B   ①任何一个集合是它本身的子集。AíA   ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)   ③如果AíB,BíC,那么AíC   ④如果AíB同时BíA那么A=B   3.不含任何元素的集合叫做空集,记为Φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集。   三、集合的运算   1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.   记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.   2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.   3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,   A∪φ=A,A∪B=B∪A.   4、全集与补集   (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)   记作:CSA即CSA={x|x?S且x?A}   S   CsA   A   (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。   (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U   二、函数的有关概念   1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.   注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.   定义域补充   能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.   (又注意:求出不等式组的解集即为函数的定义域。)   构成函数的三要素:定义域、对应关系和值域   再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)   (见课本21页相关例2)   值域补充   (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。   3.函数图象知识归纳   (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.   C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}   图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。   (2)画法   A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.   B、图象变换法(请参考必修4三角函数)   常用变换方法有三种,即平移变换、伸缩变换和对称变换   (3)作用:   1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。   发现解题中的错误。   4.快去了解区间的概念   (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.   5.什么叫做映射   一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”   给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象   说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。   常用的函数表示法及各自的优点:   1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2解析法:必须注明函数的定义域;3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4列表法:选取的自变量要有代表性,应能反映定义域的特征.   注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值   补充一:分段函数(参见课本P24-25)   在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.   补充二:复合函数   如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。   例如:y=2sinXy=2cos(X2+1)   7.函数单调性   (1).增函数   设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1   如果对于区间D上的任意两个自变量的值x1,x2,当x1   注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;   2必须是对于区间D内的任意两个自变量x1,x2;当x1   (2)图象的特点   如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.   (3).函数单调区间与单调性的判定方法   (A)定义法:   1任取x1,x2∈D,且x1   (B)图象法(从图象上看升降)_   (C)复合函数的单调性   复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:   函数   单调性   u=g(x)   增   增   减   减   y=f(u)   增   减   增   减   y=f[g(x)]   增   减   减   增   注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2、还记得我们在选修里学习简单易行的导数法判定单调性吗?   8.函数的奇偶性   (1)偶函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.   (2)奇函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.   注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。   2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).   (3)具有奇偶性的函数的图象的特征   偶函数的图象关于y轴对称;奇函数的图象关于原点对称.   总结:利用定义判断函数奇偶性的格式步骤:1首先确定函数的定义域,并判断其定义域是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.   注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.   9、函数的解析表达式   (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.   (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的'方法求出f(x)   10.函数最大(小)值(定义见课本p36页)   1利用二次函数的性质(配方法)求函数的最大(小)值2利用图象求函数的最大(小)值3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   第二章基本初等函数   一、指数函数   (一)指数与指数幂的运算   1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (1)?;   (2);   (3).   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质   a>1   0   图象特征   函数性质   向x、y轴正负方向无限延伸   函数的定义域为R   图象关于原点和y轴不对称   非奇非偶函数   函数图象都在x轴上方   函数的值域为R+   函数图象都过定点(0,1)   自左向右看,   图象逐渐上升   自左向右看,   图象逐渐下降   增函数   减函数   在第一象限内的图象纵坐标都大于1   在第一象限内的图象纵坐标都小于1   在第二象限内的图象纵坐标都小于1   在第二象限内的图象纵坐标都大于1   图象上升趋势是越来越陡   图象上升趋势是越来越缓   函数值开始增长较慢,到了某一值后增长速度极快;   函数值开始减小极快,到了某一值后减小速度较慢;   注意:利用函数的单调性,结合图象还可以看出:   (1)在[a,b]上,值域是或;   (2)若,则;取遍所有正数当且仅当;   (3)对于指数函数,总有;   (4)当时,若,则;   二、对数函数   (一)对数   1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)   说明:1注意底数的限制,且;   2;   3注意对数的书写格式.   两个重要对数:   1常用对数:以10为底的对数;   2自然对数:以无理数为底的对数的对数.   对数式与指数式的互化   对数式指数式   对数底数←→幂底数   对数←→指数   真数←→幂   (二)对数的运算性质   如果,且,,,那么:   1?+;   2-;   3.   注意:换底公式   (,且;,且;).   利用换底公式推导下面的结论(1);(2).   (二)对数函数   1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).   注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。   如:,都不是对数函数,而只能称其为对数型函数.   2对数函数对底数的限制:,且.   2、对数函数的性质:   a>1   0   图象特征   函数性质   函数图象都在y轴右侧   函数的定义域为(0,+∞)   图象关于原点和y轴不对称   非奇非偶函数   向y轴正负方向无限延伸   函数的值域为R   函数图象都过定点(1,0)   自左向右看,   图象逐渐上升   自左向右看,   图象逐渐下降   增函数   减函数   第一象限的图象纵坐标都大于0   第一象限的图象纵坐标都大于0   第二象限的图象纵坐标都小于0   第二象限的图象纵坐标都小于0   (三)幂函数   1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.   2、幂函数性质归纳.   (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);   (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;   (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.   第三章函数的应用   一、方程的根与函数的零点   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   1(代数法)求方程的实数根;   2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.   【内容延伸】:   学好高中数学必修一   第一、刚接触的东西,自然会比较陌生,此时要做的第一步是认真地把课本的内容题目和标题看一遍。   第二、养成预习的好习惯,偶尔用笔画一画你不是很懂的地方,写一写,好记性不如烂笔头。   第三、数学课堂上要准备一个好的笔记本,用来记录老师讲的重点,勤奋做数学笔记。   第四、课后多做跟老师讲的有关的练习题,巩固一下课堂上的知识点,课后练习都不要放过。   第五、准备一个纠错本,养成记录错题的习惯,考过的试题,做错了的,把题目抄一遍,不要看答案,再把思路整理一遍,自己写一遍答案。   第六、学会做总结,总结你为什么会错,是不是没有把握好知识点,没有把握好的重点再去研究下。   第七、学会做数学归类,归类同类题,有助于你记忆。不仅让你记忆这道题的做法,还让你记忆它的方法,记住一句话:万变不离其宗。

[create_time]2022-06-17 00:54:45[/create_time]2022-06-30 21:13:31[finished_time]1[reply_count]0[alue_good]慧圆教育[uname]https://himg.bdimg.com/sys/portrait/item/wise.1.f71b4cad.Rgw38a9dxBAbEi7qW4srDA.jpg?time=4738&tieba_portrait_time=4738[avatar]TA获得超过4072个赞[slogan]这个人很懒,什么都没留下![intro]11[view_count]

求郭化楠的高中数学教学视频百度云全套,谢谢

《郭化楠的高中数学教学视频》百度网盘高清资源免费在线观看: 链接: https://pan.baidu.com/s/1EFnnn0dsT-xHZijS8tQRdQ 提取码:gnwq | ├──秋季班视频讲解(完结) | | ├──**01 不等式 配套练习.mp4 143.43M | | ├──**02.等差等比数列&数列求和递推 配套练习.mp4 636.09M

[create_time]2022-01-15 23:31:17[/create_time]2018-05-01 23:08:52[finished_time]1[reply_count]2[alue_good]萌伊515[uname]https://himg.bdimg.com/sys/portrait/item/wise.1.5afed15b._ySnOE-zSw-Ww6-qhLFxYg.jpg?time=3463&tieba_portrait_time=3463[avatar]TA获得超过238个赞[slogan]这个人很懒,什么都没留下![intro]830[view_count]

求[高中数学] 司马红丽高中数学全套教学视频百度云网盘下载

2019徐宣庆数学全年全套课程(高清63G完结)百度网盘 链接: https://pan.baidu.com/s/1ZQDAlTUFfVAU6t9p4kYmvQ 提取码: biws 复制这段内容后打开百度网盘手机App,操作更方便哦 若资源有问题欢迎追问~

[create_time]2021-08-04 01:35:46[/create_time]2015-07-05 11:12:39[finished_time]9[reply_count]7[alue_good]研途末路繁华[uname]https://himg.bdimg.com/sys/portrait/item/wise.1.a52ba3c9.WZznZi_ztklJI4bVi7mZiA.jpg?time=11879&tieba_portrait_time=11879[avatar]醉心答题,欢迎关注[slogan]这个人很懒,什么都没留下![intro]56090[view_count]

求郭化楠的高中数学教学视频百度云全套,谢谢

《郭化楠的高中数学教学视频》百度网盘高清资源免费在线观看: 链接: https://pan.baidu.com/s/1EFnnn0dsT-xHZijS8tQRdQ 提取码:gnwq | ├──秋季班视频讲解(完结) | | ├──**01 不等式 配套练习.mp4 143.43M | | ├──**02.等差等比数列&数列求和递推 配套练习.mp4 636.09M

[create_time]2022-01-14 23:31:17[/create_time]2018-04-30 23:08:52[finished_time]20[reply_count]2[alue_good]小粒粒学姐[uname]https://pic.rmb.bdstatic.com/bjh/8e18816706396d3a7205cc70b0e98d24.jpeg[avatar]学生[slogan]最暖不过人间烟火气。[intro]14776[view_count]

求高中数学教课视频全套

高中数学妙招视频百度网盘资源免费下载 链接:https://pan.baidu.com/s/1FG5FWxc0Y5_Iu-uUTlbPeQ 提取码:ajnh 高中数学妙招视频|圆锥曲线3.MP4|圆锥曲线2.MP4|圆锥曲线1.MP4|向量4.mp4|向量3 .mp4|向量2 .mp4|统计概率4.mp4|统计概率3.mp4|统计概率2.mp4|统计概率1.mp4|算法与初步.mp4|数列3.mp4|数列2.mp4|数列1.mp4

[create_time]2022-03-02 10:40:26[/create_time]2016-08-27 18:12:17[finished_time]2[reply_count]1[alue_good]水清浅囍[uname]https://himg.bdimg.com/sys/portrait/item/wise.1.c8aecd38.-64agrYVG4JbInOISCVdBg.jpg?time=9410&tieba_portrait_time=9410[avatar]用力答题,不用力生活[slogan]这个人很懒,什么都没留下![intro]368[view_count]

上一篇:亲爱的妈妈4韩国电影在线

下一篇:眼妆画法